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Abstract. Consider the fluid dynamic limit problem for the Broadwell system of the kinetic 

theory of gases, for Riemann, Maxwellian initial data. The formal limit is the Riemann problem 

for a pair of conservation laws and is invariant under dilations of coordinates. We are interested 

on the structure of shock solutions entailed by fluid-dynamic limits. We review certain results on 

the existence of shock profiles for the Broadwell model and on the approach of self-similar fluid 

dynamic limits, and carry out comparisons between the two methods. 
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University of Wisconsin-Madison 
Madison, WI 53706 

§1. Introduction 

Being among the simplest models in the kinetic theory of gases, the Broadwell model has served 

as a paradigm to understand the phenomenon of relaxation and the transition from a microscopic 

to a macroscopic description of gases. It consists of the system of semilinear hyperbolic equations 

and derives from a six-velocity model when specializing to one-dimensional flows, for which the 

densities of particles moving in directions orthogonal to the flow are all equal. (We refer to 

Broadwell [B] or to Platkowski and Diner [PI] for the derivation in the kinetic theory context). 

The function / = (f\,fv,fz) is defined for (x,t) € K. x 1R+ and describes densities of particles: f\ 

for particles moving in the positive z-direction, fa in the negative x-direction and fa in each of the 

positive or negative y- or z-directions; as a consequence we confine to solutions with fj > 0. The 

parameter e stands for the mean free path, a measure of the average distance between successive 

collisions. The right hand side in (1.1) is called the collision operator and measures the rate of gain 

(or loss) in densities of particles effected through collisions. It is characterized by the quantity 

Q(/) = /!-/i/2- (1.2) 

The zeroes of Q(f) are the states of equilibrium for the system, ß = /1/2, and are called 

Maxwellians. Finally, associated with each / are the quantities pf = /i + /2 + 4/3, TO/ = /1 — /J, 

measuring the local density and momentum flux in the x—direction, respectively. 

The limit when the mean free path approaches zero is known as the fluid dynamic limit. For 

small mean free path the strong interactions of particles allow a macroscopic description of the 

Typeset by Aj^S-T^i 



flow to become meaningful. In the case of the Broadwell model the induced macroscopic "Euler 

equations" are easy to identify. First rewrite (1.1) in the form 

|(/i + /2+4A) + ^(/i-/2) = 0, 

|(A-A) + |(A + A) = o. («) 
dh _     * /12     t t \ 
-m--Yeif3~flh)- 

It is formally expected that as e -*■ 0 the first two equations remain unchanged while the third 

causes the limit of / to be a local Maxwellian. If we denote by (Fi,F2,F3) the limit of /, then 

F3 = (FiF2)
1/2 and F = (F1,F2) satisfies the limiting fluid equations 

:(fi + F2 + 4{F1F2)
1/2) + -^{Fx -F2) = 0, di (1.4) 

Jt(F1-F2) + -(F1+F2) = 0. 

The corresponding macroscopic density and momentum of the fluid are given by 

p = F1+4(F1F2)
1'2+F2,        m = pu = F1-F2. (1.5) 

The algebraic system can be easily inverted and leads to an alternative form of the limit "Euler 

equations", in terms of the macroscopic variables (p, u), 

a a (L6) 

where g(u) := | 2(1 + 3M
2
)

1
/

2
 - 1 . They form a strictly hyperbolic, genuinely nonlinear system 

of conservation laws (Caflisch [C]). 

The justification of the fluid dynamic limit has been the object of several investigations. We 

refer to Cercignani [Ce] for a survey of the literature on the Boltzmann equation and to Platkowski 

and Diner [PI] for results on discrete velocity models of kinetic theory. For the Broadwell model, 

the fluid dynamic limit is understood for smooth solutions of the limit "Euler equations" (Inoue 

and Nishida [NI], Caflisch and Papanicolaou [CP]). Regarding the case of solutions with shocks, we 

mention the studies on stability (in time) of traveling wave solutions (Kawashima and Matsumura 

[KM]) or rarefaction wave solutions (Matsumura [M]) for the Broadwell model, and a recent study 

by Xin [X], showing that a given piecewise smooth solution with noninteracting shocks of the limit 



fluid equations can be approximated by solutions of the Broad well system as e —► 0, that gives 

a definitive answer to one direction of the problem. The converse problem, to show that a given 

family of solutions to the Broadwell system converges globally in time to a fluid-dynamical solution, 

remains at present open. 

Insight in the latter direction is provided by the approach of self-similar fluid dynamic limits, 

introduced in Slemrod and Tzavaras [ST] and further studied in Tzavaras [T] and Fan [F]. For 

Riemann, Maxwellian data 

/(M) = {C-       X>,1       with /* = (tf'ft'f?) (1J) 
Q(f-) = Q(f+) = o,   tf,/?,/? >o, (M) 

admissible solutions of the limit fluid equations (1.4) are expected to be self-similar functions of 

£ = x/t. On the other hand, the Broadwell system does not possess space-time dilational invariance 

and does not admit self-similar solutions of that type. Motivated by an analogous idea for systems 

of conservation laws (Dafermos [D]), one considers a modified Broadwell system 

dfx      dfx _  1 ,  2      f f\ 

which does preserve the invariance under dilations (x,f) -> (ax, at), a > 0. The problem (1.7-1.8) 

admits self-similar solutions of the form / = f(x/t), that are constructed by solving the singular 

boundary value problem 

-Ul + fl =-£(fi - fxh) 

-tti-fl = -(fl-hf2), for {€[-1,1] 
\"e) 

-a = -Yeui-hh) 
/(-i) = r, /(+i) = /+ 

subject to data /* satisfying (M). There are three goals to be attained: (i) To construct solutions 

fe of the problem (Ve) for e > 0 fixed, (ii) To show that as e -> 0+ the solutions fe converge 

a.e to a local Maxwellian F solution of the Riemann problem (1.4, 1.7). (iii) To investigate the 

structure induced on F from emerging through self-similar fluid dynamic limits. 



In this article we present a survey of applications of the method to the Broadwell model ([ST], 

[T] and [F]) and comparisons with studies of shock profiles ([B], [C]). The hope is the approach 

will be useful in studying relevant questions for other kinetic theory models or for hyperbolic 

conservation laws with relaxation terms. The presence of relaxation mechanisms is natural in 

many physical contexts and has been investigated extensively (e.g. Liu [L], Chen, Levermore and 

Liu [CLL]), both in the realm of kinetic theories as well as for models that arise in various branches 

of continuum physics. One objective is to obtain a quantitative understanding of the regularizing 

effect induced on shocks by relaxation. In this direction, we mention the comparison of shock 

profiles with traveling wave solutions of an associated system of viscous conservation laws arising 

from (1.1) via the Chapman-Enskog expansion [C]. An important difference of the self-similar 

relaxation investigated here is that it penalizes the whole wave fan simultaneously. Comparisons 

between the structure entailed by self-similar limits and the Broadwell shock profiles are carried 

out in the text. 

§2. The limiting fluid equations 

First certain properties of the limit fluid equations (1.4) for solutions F{ > 0 are presented. These 

properties are discussed in Caflisch [C]; we give an independent presentation for completeness and 

to account for extended differences in notation. The characteristic speeds Ai(F), X2(F) are the 

solutions of the binomial 

(Ft +F2 + yfiW) A,-2 - (Fx - F2)X{ -JF\F2 = Q; (2.1) 

they are real and are given by the expressions 

where Ai corresponds to the minus sign and A2 to the plus. One easily checks 

(2.2) 

-1 < Xt(F) < 0 < A2(F) < 1,        Xt(F) < F^
F^ + 2/Fjr = u < A^) (2-3) 

The corresponding right eigenvectors are given by 

n = A. + l 
A.-l 

i' = l,2. 
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Upon differentiating (2.1) we can express Ij»-, fj1 in terms of Aj, and use the resulting relations 

to compute 
VA    r ^(1~A'2) /<(^ + ^+4y^V^)A,-(F1-F2)\ 

'    '      2SKF2   \(Fi + F2 + VKF2)2\i-(F1-F2))' 
K-} 

It follows from (2.2), (2.3) and (2.4) that VAj • rt > 0 for i = 1, 2, and the system (1.4) is strictly 

hyperbolic and genuinely nonlinear. 

The shock curves for (1.4) are defined by solving the Rankine-Hugoniot conditions, expressed 

as the equivalent algebraic system 

— S ( «1 + 2 W3 ) + Ul = -5 ( W\ + 2 W3 ) + W\ 

-S ( U2 + 2 M3 ) - U2 = -« ( t»2 + 2 W3 ) - tü2 (2.5) 

W32 — Wl «2 = W32 — tUj U>2 = 0 

for the states u = (ui,u2,u3) 
an<i w = (wi,w2,w3) and the shock speed s.  To this end fix one 

state, say w, with w3 = ■s/w\w2 and consider the increments [ui] = u; — tUj. Then 

2 s [u3] = (l-s) [m] = -(1 + 5) [ii2] (2.6) 

[«3] ([«3] + 2w3) = [Ul] [u2] + w2 [ui] + Wi [u2] (2.7) 

Substitution of (2.6) into (2.7) yields 

[«3] (l + 3s2)[u3] -2 [(wi +w2 + w3)s
2 - (wi -w2)s- w3] = 0 

If [«3] = 0 there is no shock. Thus, using (2.1) and (2.6), we obtain a representation of the shock 

curve parametrized by the shock speed s in the form 

2(t»i + w2 + y/wiwj) , w .   .» 
[«3] = — 1 + 3ja    (s - X^w)) (s - A2(u'))' 

2s 2s 2,. ,+*r,   is <2-8> 

Given a triplet (u, w; s) satisfying (2.8) there are two associated shock solutions with speed s of 

(1.4) one with left state w and right state u and one with the states reversed. 

§3. Shock profiles for the Broadwell system 

The regularizing effect induced on shocks by relaxation can be understood by studying traveling 

wave solutions for (1.1) (c.f. Broadwell [B], Caflisch [C]). If we introduce the ansatz 

rr / •£  —  St . X  —  St ,   , * __1_ 
fj=vi(—T-)'>    r = ^— >    vj(±oo) = ff (3.1) 



and look for a traveling wave connecting two end states /_ and /+, then Vj satisfy the system of 

differential equations 

(_ + l)^-«.),    -(. + !)*&.,,(.),    -.£ .-»<,(,). (3.2) 

After some simple manipulations, it turns out that v — (t>i, t>2, v3) must satisfy the set of equations 

2* (vs(r) - /a") = (l-s) MT) - /f) = -(1 + s) (t*(r) - /f), (3.3) 

% = &*-**> (3'4) 

that u(±oo) must be Maxwellian states satisfying the Rankine-Hugoniot conditions (2.5), and thus 

the jumps [fj] = ff - fj of the data are connected with the shock speed s through relations (2.8). 

Equation (3.4) may be written in the form 

the solution of which is given by the explicit formula 

Mr) = £±£ + ^~ tanh (^J^y (/3
+ " h~) (r - r0)) (3.6) 

where the constant r0 determines the shift of the shock profile. Then V\(T) and V2(T) are obtained 

from (3.3). 

The question arises which shock solutions of (1.4) have associated shock profiles. From (3.6), a 

triplet (/+, /~; s) satisfying (2.8) admits a shock profile with /" as left state and /+ as right state 

if and only if s(s2 — l)(/3
+ - /3~) > 0. It follows, upon using (2.8) to express [/3] (with w = /3~ 

and with w = ff) and (2.3), that the latter condition is equivalent to 

Ai(/+) < s < Ai(/-)      for5<0, 
(3-7) 

A2(/+) < s < A2(/-)      fors>0. 

These are the Lax shock conditions for (1.4). 

§4. Self-similar fluid dynamic limits 

We turn now to our main objective the study of the system (Ve) and its limits e —► 0. Regarding 

the question of existence of solutions we have 



Theorem 1 (Slemrod and Tzavaras [ST], Fan [F]). For any /* satisfying (M) and e > 0 the 

boundary-value problem (Ve) has a solution fe continuously differentiate in (—1,0) U (0,1) and 

Holder continuous with exponent 0 < ae < 1 at the singular points £ = —1,0,+1. The regularity 

improves as e decreases and for e < £Q the function f£ is Lipshitz continuous on [—1,1], 

The functions fe are extended to the whole real line by setting fe = /"" on (-oo,-l) and 

fe = f+ on (l,oo). Regarding the self-similar fluid-dynamic limit we have 

Theorem 2 (Slemrod and Tzavaras [ST]). Let {/£}e>o be a family of extended solutions of (Ve) 

corresponding to data /* subject to (M). Then: 

(i) There are positive constants mj, Mj and Kj, j = 1,2,3, depending on the boundary data /* 

but independent of e such that 

0<mi</?(O<Mi,        £€[-1,1] (4.1) 

TV{_hl] // < Kj (4.2) 

(ii) There exists a subsequence {f£n } with en —> 0 and a positive, bounded function F of bounded 

variation such that fCn —*■ F pointwise on the reals. The function F satisfies 

F3 = y/KFi     for a.e. £ € [-1,1] (4.3) 

and the balance of mass and momentum equations 

-{■£& + F2 +4(F1F2)
1/2) + ^(f! - F2) = 0, 

(4.4) 

in the sense of measures. 

Remarkably the problem of existence is more difficult than performing the e —► 0 limit. There 

are two approaches to tackle the existence question. In [ST] a Fredholm alternative type of the- 

ory for singular boundary value problems is developed. The theory has a wide range of potential 

applicability, but at the final stage one must show that a certain linear but non-autonomous 

boundary-value problem has no eigensolutions. As there are no general techniques for such ques- 

tions this is a technical obstacle. For the Carleman model this method works for any Maxwellian 

data, but for the Broadwell restrictions on /*, of technical nature, had to be imposed. These were 

removed in [F], where the existence question is addressed by first desingularizing the system and 



then taking a dynamical systems point of view for the resulting boundary-value problem. Fan [F] 

fixes /* and uses a shooting method to construct solutions on (-1,0) and (0,1) separately, and 

then shows that the traces of the constructed solutions at £ = 0 intersect transversally. 

The uniform variation estimates are based on the following observation. The collision operator 

Q(fc) satisfies the differential equation 

dQ(f£) =llJL £_+ £) Q(fe) = - ce Q(f'). (4.5) 

The uniqueness theorem for differential equations implies that on each of the intervals (-1,0) and 

(0,1) either Q(f£) is identically zero or it never vanishes. (Ve) in turn implies that the /J are 

monotone or constant on the respective intervals, and (4.1), (4.2) follow by a case analysis and a 

use of the balance of mass equation for the L°° bounds. One also obtains the uniform estimate 

n\9ip.\dr<c (4.6) 

Helly's theorem implies there exists a subsequence {/£» } and a function F of bounded variation 

so that /e" -» F pointwise on IR. Use of (4.1) and (4.6) shows that the components Fj > 0 and F 

is a local Maxwellian. Passing to the limit e —► 0 in (Ve), we deduce F satisfies (4.4) in the sense 

of measures. 

For a function of bounded variation the right and left limits F({-), F(£+) exist at any £ and 

its domain can be decomposed into two disjoint subsets : C the points of continuity of F, and S 

the points of jump discontinuity of F, with S at most countable. The components Fj inherit the 

monotonicity properties of /J. On account of (4.6) 

F3({±)=(Fi(t±)F2({±))1/2,     teS. 

(4.4) implies that at any point f € S the Rankine-Hugoniot conditions are satisfied 

fj 

(4.7) 

-H[F1+F2+4 y/FTF2) f+_)+[F1-F2] f+_ = 0 

-H[Fi-F2]\l
+_)+[Fl + F2}\l

+_ = 0 
(4.8) 

By construction F = /_ on (-oo,-l] and F = /+ on [l,oo).  The function (Fi(f ),F2(J)) is 

easily seen to be a weak solution of the Riemann problem (1.4), (1.7). 



§5. Structure induced by fluid dynamic limits 

In the previous section we outlined the construction of a solution to the Riemann problem (1.4), 

(1.7) via self-similar fluid dynamic limits. In this section we discuss the structure of the resulting 

limit, emphasizing the behavior at points of discontinuity. We outline the main ingredients of the 

technique and refer to Tzavaras [T] for details of the presentation. 

First, the appropriate framework for passing to the s —*■ 0 limit in (V£) is that of measures. 

Consider the functions 

r^rmäL« (5,) 
J—oo £ 

and note that $£ takes constant values outside [-1,1]. The sequence {$c} is of uniformly bounded 

variation on Ht. Helly's selection principle implies there exists a subsequence, denoted again by 

{$£}, and a function of bounded variation $ such that $e —► $ pointwise on IR. In turn, Helly's 

convergence theorem implies 

< ve, ip >:=  / <pQU-ldt =  f <pd$e -*   f <pd$ -.< v,ip> (5.2) 

for any <p £ CC(IR), continuous function with compact support. By the Riesz representation 

theorem ue, v may be viewed as finite (signed) Borel-Stieltjes measures, both supported on [—1,1], 

vc is generated by $e and v is generated by $, the right continuous version of $ defined by 

4>(z) = $(a;+). Equation (5.2) states that uc —■• v in the weak-* topology of measures. It allows 

to pass to the limit e -► 0 in (Ve) and obtain, for any test function cp € C*(IR.), 

/ 

/ 

/ 

F1((t-i)<p)'d(;=<v,<p> 

F2{(t+l)<p)'d{=<v,<p> (5.3) 

with Fz = y/FiF?. It is suggested by (5.3) and can be justified by an analysis near the singular 

points that supp v is precisely the set of points where / is not a constant state.  Equation (5.3) 

implies the weak form (4.4), but carries additional information if further properties off are known. 

The second ingredient is a representation formula for Q(f£)/e. Using (4.5) and (Vc) it is shown 

in [T] that 
Q(/e)_/(/i(0)-/f)/*i on (-1,0) 

(/|(0)-/2
+)/4 on (0,1) 

Q = {;-;;„; «v.:    ..;.;/ <") 
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where //f., /z+ are given by 

As'tt) exp{i fj   ce(s)ds} 

^■g^^v^^Tii^K f6('M)'   (5'5) 

rt(°-?^5<-^^i^W<     £e(M)' (5'6) 

and a_, a+ are any fixed points with -1 < a_ < 0 < a+ < 1. Note that because of their form 

(along subsequences) fi^. —>■ /i+ and fit —>■ /x_ weak-* in measures. We deduce from (5.2) and (5.4) 

that v arises as a limit of probability measures and supp v C supp fi- U supp //+. 

Remarkably, the function c£ in (5.5 - 5.6) and (4.5) is connected to the wave speeds of the 

hyperbolic system (1.4), as it can be expressed in the form 

c£ = - j^^ (X + & + #) <£ ~ Al(/£)) Ü - X2{n)' (5J) 

where Ai)2(/) are given by 

1 
Ai.a(/) = h-h± V(/i + /2+2/3)

2-4/1/2 (5.8) 
2(/l+/2+/3) 

A comparison of (5.8) and (2.2) shows that Aii2(/) coincide with the wave speeds A1>2(F) along 

Maxwellian states. Hence, along the convergent sequence fe —> F, 

c*-+c = -       ^       {Ft + F2 + F3) (£ - Ai(F)) (f - A2(F)) (5.9) 

pointwise on (-1,0) U (0,1). 

Use of the above ingredients, together with an analysis of the behavior near the singular points, 

gives ([T], Lemma 4.3, Proposition 4.4) 

Proposition 3 . There are constants Ai±, A2± with —1 < Ai_ < Ai+ < 0 < A2_ < A2+ < 1 such 

that suppi/ C (supp/i_ Usupp/j+) C [Ai_,Ai+] U [A2_,A2+]. Moreover 

0) If f £ supp/i+ then J    c(s)ds < J    c(s)ds for any ( G (0,1) 

(ii) If £ € supp/x_ then Jj   c(s)ds < J    c(s)ds for any £ 6 (-1,0). 

The maximization properties (i) and (ii) capture the effect induced on shocks by self-similar 

fluid dynamic limits. To illustrate, fix £ < 0, £ € S. Then £ G supp/x_, the function g achieves its 

global maximum in (—1,0) at £ and thus c(£+) < 0, c(f-) > 0. Using (5.9) and (2.3) we deduce 
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^I(JF(£+)) ^ £ ^ ^i(-F(£-))> a wea^ f°rm °f tne ^ax shock conditions. In fact the complete 

behavior of F can de characterized and the final result is stated in the first part of Theorem 4. 

The last topic is to discuss the relation between self-similar limits and shock profiles. Let £ € S 

a point of discontinuity for F, and note that F(£-) ^ F(£+) are Maxwellian states satisfying (4.8). 

Given a sequence of points {f£} with ££ -> f, estimates (4.1-4.2) imply the functions {uj} denned 

by Vj(() = fj{£e + £C) are of uniformly bounded variation in the new variable -oo < ( < oo. 

This accounts for a shift of the shock in the original solution and the introduction of the stretched 

variable £. Helly's theorem and a diagonal argument in turn imply the existence of a subsequence 

and a function v = (v\, ^2,^3) such that 

fjite + e C) -»■ vj(C)        pointwise for  - 00 < ( < 00 . (5.10) 

Then Vj are solutions of the traveling wave equations (3.2) (c.f. second part of Theorem 4). 

Theorem 4 (Tzavaras [T]). The limiting function F constructed in Theorem 3 has the behavior: 

F stays constant on each connected component of JR, — supp v. Also there exist disjoint closed sets 

I\k, with each I\k associated with the k-th characteristic speed, such that suppi/ = I\x U I\2 and 

(i) either I\k is empty, or 

(ii) I\k contains a single point in S, in which case F is a shock wave on I\k satisfying (4.8) and 

the Lax shock conditions, or 

(iii) I\k is a full interval of points in C, in which case F is a k-rarefaction wave on I\k. 

Given a point of discontinuity £ 6 S, there exists a choice of the sequence {£e} such that v(Q in 

(5.10) is a (smooth) solution of (3.2) that satisfies   lim   v(Q = F({-), lim v(Q = F(£+). 
C—►—00 C—»oo 

We remark that the proof is of purely analytical nature.   Geometric properties such as the 

genuine nonlinearity of (1.4) and the form of the shock curves (2.8) are only used in the last step 

to exclude contact discontinuities and simplify the emerging structure of F. 
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